The role of Ca2+-dependent cationic current in generating gamma frequency rhythmic bursts: modeling study.

نویسندگان

  • T Aoyagi
  • Y Kang
  • N Terada
  • T Kaneko
  • T Fukai
چکیده

Fast rhythmic bursting pyramidal neuron or chattering neuron is a promising candidate for the pacemaker of coherent gamma-band (25-70 Hz) cortical oscillation. It, however, still remains to be clarified how the neuron generates such high-frequency bursts. Here, we demonstrate in a single-compartment model neuron that the fast rhythmic bursts (FRBs) can be achieved through Ca2+-activated channels in the entire gamma frequency range. In a previous in vitro study, a subset of rat cortical pyramidal cells displayed a long-lasting depolarizing afterpotential (DAP) following a plateau-type action potential when K+ conductances were suppressed with Cs+, and this DAP was found to be mediated by a Ca2+-dependent cationic current. This current appeared also suitable for producing a hump-like DAP, a characteristic of the chattering neurons, because of its reversal potential being approximately -40 mV. In the present theoretical study, we show that the enhancement of such a DAP leads to generation of doublet/triplet spikes seen during FRBs. The firing pattern during FRBs is primarily determined by a Ca2+-dependent cationic current and a small-conductance Ca2+-dependent potassium current, which are differentially activated by a biphasically decaying Ca2+ transient produced by fast buffering and a slow pump extrusion after each spike. With varying intensities of injected current pulses, the interburst frequencies of the FRBs range over the entire gamma frequency band (25-70 Hz) in our model, while the intraburst frequencies remain higher than 300 Hz. Our model suggests that FRBs are essentially generated in the soma, unlike the model based on a persistent sodium current, and that the alteration of Ca2+ sensitivity of Ca2+-dependent cationic current plays an essential role in controlling the FRB pattern.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O23: Modulation of Pacemaker Channels and Rhythmic Thalamic Activity by Demyelination and Inflammatory Cytokines

The thalamus is a central element for the generation of rhythmic oscillatory activity under physiological and pathophysiological conditions. Especially slow oscillations in the delta and theta frequency band which normally occur during slow-wave sleep are associated with a number of neuropsychiatric conditions if they occur during wakefulness and may be the basis for the generation of character...

متن کامل

Gamma Rhythmic Bursts: Coherence Control in Networks of Cortical Pyramidal Neurons

Much evidence indicates that synchronized gamma-frequency (20-70 Hz) oscillation plays a significant functional role in the neocortex and hippocampus. Chattering neuron is a possible neocortical pacemaker for the gamma oscillation. Based on our recent model of chattering neurons, here we study how gamma-frequency bursting is synchronized in a network of these neurons. Using a phase oscillator d...

متن کامل

Stimulus-dependent gamma (30-50 Hz) oscillations in simple and complex fast rhythmic bursting cells in primary visual cortex.

Oscillatory activity is generated by many neural systems. gamma band (approximately 40 Hz) oscillations in the thalamus and cortex occur spontaneously and in response to sensory stimuli. Fast rhythmic bursting (FRB) cells (also called chattering cells) comprise a unique class of cortical neurons that, during depolarization by current injection, intrinsically generate bursts of high-frequency ac...

متن کامل

The role of the hyperpolarization-activated cationic current I(h) in the timing of interictal bursts in the neonatal hippocampus.

Under both pathological and experimental conditions, area CA3 of the adult or juvenile hippocampus generates periodic population discharges known as interictal bursts. Whereas the ionic and synaptic basis of individual bursts has been comprehensively studied experimentally and computationally, the pacemaker mechanisms underlying interictal rhythmicity remain conjectural. We showed previously th...

متن کامل

P146: Gamma Aminobutyric Acid (GABA) and its Alterations in Stress

Gamma aminobutyrate (GABA) is a non-protein amino acid that is thought to play an important role in the modulation of the central response to stress. Mechanisms by which GABA may facilitate these responses to stress are metabolic and/or mechanical disruptions. Environmental stresses increase GABA accumulation through cytosolic acidification, induce an acidic pH-dependent activation of glutamate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 115 4  شماره 

صفحات  -

تاریخ انتشار 2002